Putnam 2024 Problems

Vamshi Jandhyala

December 2024

Contents

1 Problemn A o 1
0 T) 11) P 1
1.2 Estimation of probability using Monte-Carlo ... 3

2 Problem B .. 5
2.1 SOIULION . ..ot 5
2.2 Computational verification 6

1 Problem A5

Consider a circle Q with radius 9 and center at the origin (0, 0), and a disk A with radius 1 and
center at (7,0), where 0 < r < 8. Two points P and Q are chosen independently and uniformly at
random on Q. Which value(s) of ¥ minimize the probability that the chord PQ intersects A?

1.1 Solution

Let the two random points on Q be P(9 cos 6;, 9 sin 8;) and Q(9 cos 6,, 9 sin 6,) where
0 < 6,,6, < 27. The slope of the chord PQ is

9sin0, —9sin6; 91+62>
9cosf, —9cosO; COt(2) (1.1)
The equation of the line passing through P and Q is given by
(y—9sin8;) = — cot(@)(x —9cos ;). (1.2)

The perpendicular distance d of the point from the center of disk A at (r, 0) to the above line is given
by:

|(r —9cos0;) cot(@) —9sin 61|

d=
\/1 + cot%@)
= sin(@) ‘r cot(#) - 9csc(el ; 92>cos<el ; 92) 43
= rcos(61 ; 62) - 9cos<61 ; 62) .
For the chord % to intersect A, d < 1, i.e.
-1< rcos(#) -9 cos(#) <1 (1.4)

1/7

Let A(r, 6;, 6,) denote the area of the region given by Equation (1.4), the probability of the chord PQ

intersecting A as a function of r is given by

A(r, 91, 62) _ A(r, 61, 62)
22w 4w

P(r) = (1.5)

61+6,

. . . 6,-6
To be able to recast A(r, 6;, 6,) as an integral, we use the substitution = u and % =v. We

now have 0 < u < 27, —7 < v < 7 and the inequality Equation (1.4) is transformed into
—1<rcosu—9cosv <1. (1.6)
As 6, =u+0v,6, = u— v, the Jacobian matrix is
%0, 00,
J= 55‘2 aaevz = (} _11> (1.7)
ou Ov

Therefore, |det(J)| for the transformation is 2. If we denote the region given by Equation (1.6) as
S(r, u,v), the probability of the chord PQ intersecting A as a function of r is given by

_ S(r,u,v) _ S(r,u,v)

P(r) = = 1.
=5 2r = sm2 (1.8)
From Equation (1.6), we get
rcosu+1 rcosu—1
————>cosSU> ———
9 9 (19)
-1 1)
> arccos(%) >Uv2> arccos(w),o <v<nm
as the cosine function is one-to-one and decreasing in [0, 7r]. We can now write S(r, u, V) as an
integral,
21 parccos(ZSE41y g
S(r,u,v) = Zf f 2dvdu = 16f g(r,u)du (1.10)
0 arccos(rmsg—uﬂ) 0
where
rcosu—1 rcosu+1
g(r,u) = arccos —g) —arccos| ————|. (1.11)
We have
2 3 , 2 3 dg(r,u)
P(r) = ?/0 g(r,u)du= P'(r) = ;/(; o du. (1.12)
Now
dg(r,u -1 -1
g(ar) _ (cos u)<(80 —2rcosu —rcos*u) 2 — (80 + 2rcosu — r? cos® u) 2) (1.13)

which, for u € (O, %) is zero for r = 0 and strictly positive for r > 0. It follows that P’(0) = 0 and
P'(r) > 0 for r € (0, 8]. Therefore, P(r) is minimized for r = 0.

2117

1.2 Estimation of probability using Monte-Carlo

In the second approach, we follow the procedure below to estimate the probability of intersection:

(i) Choose two random points on the circumference of Q.
(ii) Derive the equation of the line passing through the two points chosen above.

(iii) Calculate the perpendicular distance from the center (r,0) of A to the line using the formula
ar+c

Va0 where ax + by + ¢ = 0 is the equation of the line.
(iv) Repeat the above steps multiple times and calculate the fraction of trials where the

perpendicular distance is less than 1, the radius of A.

The above procedure gives us the following plot of the estimate of the probability as a function of r:

Chord Intersection Probability vs r

—— Simulated
0.11
0.10
oy
E
.“g“ 0.09
£
0.08 A
0.07
T T T T T T T T T
-8 —6 —4 =2 4] 2 4 6 8

From the symmetry of the plot we can see that the probability is minimized when r = 0.

1.2.1 Python code

import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm

def get line_equation(pl, p2):
"""Returns a, b, c for line ax + by + c = 0"""

a = p2[1] - pl[1]
b = pl[0] - p2[0]
¢ = p2[0]*pl[1] - pl[O]*p2[1]

return a, b, ¢
def perpendicular distance(line_coeffs, point):

"""Calculate perpendicular distance from point to line ax + by + ¢ = """
a, b, c = line_coeffs

3/7

def

x0, y0 = point
return abs(a*x0 + b*y® + c) / np.sqrt(a*a + b*b)

simulate probability(r, n_trials=100000):
"""Simulate using perpendicular distance method"""
R =9 # radius of large circle

intersections = 0

for in range(n_trials):
Generate random points on circle
thetal, theta2 = np.random.uniform(0, 2*np.pi, 2)
pl = R * np.array([np.cos(thetal), np.sin(thetal)l])
p2 = R * np.array([np.cos(theta2), np.sin(theta2)])

Get line equation and calculate distance
line coeffs = get line equation(pl, p2)

dist = perpendicular distance(line coeffs, [r, 0])

if dist <= 1: # radius of small circle is 1
intersections += 1

return intersections / n_trials

Run simulation
r values = np.arange(-8.1, 8.1, 0.1)
probabilities = []

for

r in tgdm(r_values):
prob = simulate probability(r)
probabilities.append(prob)

Plot results

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10, 6))

plot(r_values, probabilities, 'b-', label='Simulated')
grid(True)

xlabel('r")

ylabel('Probability"')

title('Chord Intersection Probability vs r')

legend()

show()

4/7

2 Problem B4

Let n be a positive integer. Set a, o = 1. For k > 0, choose an integer m,, ; uniformly at random
from the set {1,2, ..., n}, and let

Api+1,0f my > app;
Apk+1 =) Ank > if Myk = An,k> (2.14)
An ik — 1, if My k < Ay k-

. E
Let E(n) be the expected value of a,, ,,. Determine lim,,_, o, Ew,

2.1 Solution

Firstly, we notice that 1 < a,, ,, < n. Dropping the subscript n we can write the equation
Equation (2.14) as

A1 = a +X (2.15)
where X is a random variable that takes the values 1,0 and —1 when m; > a;, m; = q; and
my, < ay respectively. Taking expectation on both sides of Equation (2.15) we get
Elaks1] = Elax] + E[X]. (2.16)
To calculate E[X], we make use of the Law of Iterated Expectations,

n-—ag

ELX] = E[E[X]ax]] = E|1- ——

+(=1)- akn— 1] _ (—%)[E[ak] + ”’nL L e

Substituting the value of E[X] from Equation (2.17) in Equation (2.16), we get

n—2 n+1
Elaks1] = T[E[ak] t— (2.18)

Setting b(k) = E[ay] in Equation (2.18), we get the following recurrence relation

n—2 n+1

bk+1)= " b(k) + ” (2.19)
with b(0) = 1. We use generating functions to solve the above linear recurrence relation. Let
G(z) =). b(k)z* (2.20)
k=0

Multiplying both sides of the recurrence relation by zX and summing up both sides of the equation

term by term over the nonnegative integers, we get

5/7

e}

S bk + 12k + 222 3 bzt = L S ok
k=0 o n

a 4l—1,2—n _ n+1
= kzzob(k + 1)z 2 —G(z) = T
= (G(z) - b(0))z~! + 2 —"6(2) = n?%_lz) (2.21)
n+z
= 0= -0 -2)
1 n—2\%\ .
=>G(Z)_§,§)(n+1_(n_1)< -))z .
Therefore,
+1—n-n(=2)
lim 20V _ r}i_)r{)lo@ = ’}ergo%n (nn)(n) = %(1 —e?). (2.22)

n-oco N
b(n)

2.2 Computational verification
From the code below we get the following plot for the simulated value of E) against

calculated analytically:

Comparison of Simulated E(n)/n vs Analytical Function
—— Simulated E(n)/n

==+ 1/2(n+1 - (n-1)(1-2/n)*n)

075

0.70

0.65

0.55

0.50

0.45
80 100

6/7

2.2.1 Python Code

import numpy as np
import matplotlib.pyplot as plt

def simulate process(n, num_trials=1000):
final values = []
for in range(num_trials):
a=1
for _ in range(n):
m = np.random.randint(1l, n+1)
if m > a:
a +=1
elif m < a:
a -=1
final values.append(a)
return np.mean(final values)

def analytical function(n):
return 0.5 * ((n+1 - (n-1)*((n-2)/n)**n)/n)

Generate data points

n_values = np.arange(2, 101) # n from 1 to 100
simulated values = []

analytical values = []

Calculate both simulated and analytical values
print("Running simulation...")
for n in n_values:
if n == 1: # Special case for n=1
simulated values.append(1)
else:
en = simulate process(n)
simulated values.append(en/n)
analytical values.append(analytical function(n))

Create the plot

plt.figure(figsize=(12, 8))

plt.plot(n_values, simulated values, 'b-', label='Simulated E(n)/n', alpha=0.7)
plt.plot(n_values, analytical values, 'r--', label='1/2(n+1 - (n-1)(1-2/n)"n)",
alpha=0.7)

plt.xlabel('n")

plt.ylabel('Value')

plt.title('Comparison of Simulated E(n)/n vs Analytical Function')
plt.grid(True)

plt.legend()

plt.show()

7117

	Problem A5
	Solution
	Estimation of probability using Monte-Carlo
	Python code

	Problem B4
	Solution
	Computational verification
	Python Code

