Putnam 2024 Problems

Vamshi Jandhyala

December 2024

Contents

1	Problem A5	. 1
	1.1 Solution	. 1
	1.2 Estimation of probability using Monte-Carlo	
2	Problem B4	. 5
	2.1 Solution	
	2.2 Computational verification	

1 Problem A5

Consider a circle Ω with radius 9 and center at the origin (0,0), and a disk Δ with radius 1 and center at (r,0), where $0 \le r \le 8$. Two points P and Q are chosen independently and uniformly at random on Ω . Which value(s) of r minimize the probability that the chord \overline{PQ} intersects Δ ?

1.1 Solution

Let the two random points on Ω be $P(9\cos\theta_1, 9\sin\theta_1)$ and $Q(9\cos\theta_2, 9\sin\theta_2)$ where $0 \le \theta_1, \theta_2 \le 2\pi$. The slope of the chord \overline{PQ} is

$$\frac{9\sin\theta_2 - 9\sin\theta_1}{9\cos\theta_2 - 9\cos\theta_1} = -\cot\left(\frac{\theta_1 + \theta_2}{2}\right). \tag{1.1}$$

The equation of the line passing through *P* and *Q* is given by

$$(y - 9\sin\theta_1) = -\cot\left(\frac{\theta_1 + \theta_2}{2}\right)(x - 9\cos\theta_1). \tag{1.2}$$

The perpendicular distance d of the point from the center of disk Δ at (r,0) to the above line is given by:

$$d = \frac{\left| (r - 9\cos\theta_1)\cot\left(\frac{\theta_1 + \theta_2}{2}\right) - 9\sin\theta_1 \right|}{\sqrt{1 + \cot^2\left(\frac{\theta_1 + \theta_2}{2}\right)}}$$

$$= \left| \sin\left(\frac{\theta_1 + \theta_2}{2}\right) \right| \left| r\cot\left(\frac{\theta_1 + \theta_2}{2}\right) - 9\csc\left(\frac{\theta_1 + \theta_2}{2}\right)\cos\left(\frac{\theta_1 - \theta_2}{2}\right) \right|$$

$$= \left| r\cos\left(\frac{\theta_1 + \theta_2}{2}\right) - 9\cos\left(\frac{\theta_1 - \theta_2}{2}\right) \right|. \tag{1.3}$$

For the chord \overline{PQ} to intersect Δ , $d \leq 1$, i.e.

$$-1 \le r \cos\left(\frac{\theta_1 + \theta_2}{2}\right) - 9 \cos\left(\frac{\theta_1 - \theta_2}{2}\right) \le 1. \tag{1.4}$$

Let $A(r, \theta_1, \theta_2)$ denote the area of the region given by Equation (1.4), the probability of the chord \overline{PQ} intersecting Δ as a function of r is given by

$$P(r) = \frac{A(r, \theta_1, \theta_2)}{2\pi \cdot 2\pi} = \frac{A(r, \theta_1, \theta_2)}{4\pi^2}.$$
 (1.5)

To be able to recast $A(r, \theta_1, \theta_2)$ as an integral, we use the substitution $\frac{\theta_1 + \theta_2}{2} = u$ and $\frac{\theta_1 - \theta_2}{2} = v$. We now have $0 \le u \le 2\pi, -\pi \le v \le \pi$ and the inequality Equation (1.4) is transformed into

$$-1 \le r \cos u - 9 \cos v \le 1. \tag{1.6}$$

As $\theta_1 = u + v$, $\theta_2 = u - v$, the Jacobian matrix is

$$J = \begin{pmatrix} \frac{\partial \theta_1}{\partial u} & \frac{\partial \theta_1}{\partial v} \\ \frac{\partial \theta_2}{\partial u} & \frac{\partial \theta_2}{\partial v} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}. \tag{1.7}$$

Therefore, $|\det(J)|$ for the transformation is 2. If we denote the region given by Equation (1.6) as S(r, u, v), the probability of the chord \overline{PQ} intersecting Δ as a function of r is given by

$$P(r) = \frac{S(r, u, v)}{2 \cdot 2\pi \cdot 2\pi} = \frac{S(r, u, v)}{8\pi^2}.$$
 (1.8)

From Equation (1.6), we get

$$\frac{r\cos u + 1}{9} \ge \cos v \ge \frac{r\cos u - 1}{9}$$

$$\Rightarrow \arccos\left(\frac{r\cos u - 1}{9}\right) \ge v \ge \arccos\left(\frac{r\cos u + 1}{9}\right), 0 \le v \le \pi$$
(1.9)

as the cosine function is one-to-one and decreasing in $[0, \pi]$. We can now write S(r, u, v) as an integral,

$$S(r, u, v) = 2 \int_0^{2\pi} \int_{\arccos(\frac{r\cos u + 1}{9})}^{\arccos(\frac{r\cos u + 1}{9})} 2dv du = 16 \int_0^{\frac{\pi}{2}} g(r, u) du$$
 (1.10)

where

$$g(r,u) = \arccos\left(\frac{r\cos u - 1}{9}\right) - \arccos\left(\frac{r\cos u + 1}{9}\right). \tag{1.11}$$

We have

$$P(r) = \frac{2}{\pi^2} \int_0^{\frac{\pi}{2}} g(r, u) du \Rightarrow P'(r) = \frac{2}{\pi^2} \int_0^{\frac{\pi}{2}} \frac{\partial g(r, u)}{\partial r} du.$$
 (1.12)

Now

$$\frac{\partial g(r,u)}{\partial r} = (\cos u) \left(\left(80 - 2r\cos u - r^2\cos^2 u \right)^{-\frac{1}{2}} - \left(80 + 2r\cos u - r^2\cos^2 u \right)^{-\frac{1}{2}} \right) \tag{1.13}$$

which, for $u \in \left(0, \frac{\pi}{2}\right)$, is zero for r = 0 and strictly positive for r > 0. It follows that P'(0) = 0 and P'(r) > 0 for $r \in (0, 8]$. Therefore, P(r) is minimized for r = 0.

1.2 Estimation of probability using Monte-Carlo

In the second approach, we follow the procedure below to estimate the probability of intersection:

- (i) Choose two random points on the circumference of Ω .
- (ii) Derive the equation of the line passing through the two points chosen above.
- (iii) Calculate the perpendicular distance from the center (r, 0) of Δ to the line using the formula $\left|\frac{ar+c}{\sqrt{a^2+b^2}}\right|$ where ax+by+c=0 is the equation of the line.
- (iv) Repeat the above steps multiple times and calculate the fraction of trials where the perpendicular distance is less than 1, the radius of Δ .

The above procedure gives us the following plot of the estimate of the probability as a function of r:

From the symmetry of the plot we can see that the probability is minimized when r = 0.

1.2.1 Python code

```
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm

def get_line_equation(p1, p2):
    """Returns a, b, c for line ax + by + c = 0"""
    a = p2[1] - p1[1]
    b = p1[0] - p2[0]
    c = p2[0]*p1[1] - p1[0]*p2[1]
    return a, b, c

def perpendicular_distance(line_coeffs, point):
    """Calculate perpendicular distance from point to line ax + by + c = 0"""
    a, b, c = line_coeffs
```

```
x0, y0 = point
    return abs(a*x0 + b*y0 + c) / np.sqrt(a*a + b*b)
def simulate_probability(r, n_trials=100000):
    """Simulate using perpendicular distance method"""
    R = 9 # radius of large circle
    intersections = 0
    for _ in range(n_trials):
        # Generate random points on circle
        theta1, theta2 = np.random.uniform(0, 2*np.pi, 2)
        p1 = R * np.array([np.cos(theta1), np.sin(theta1)])
        p2 = R * np.array([np.cos(theta2), np.sin(theta2)])
        # Get line equation and calculate distance
        line_coeffs = get_line_equation(p1, p2)
        dist = perpendicular_distance(line_coeffs, [r, 0])
        if dist <= 1: # radius of small circle is 1</pre>
            intersections += 1
    return intersections / n trials
# Run simulation
r_{values} = np.arange(-8.1, 8.1, 0.1)
probabilities = []
for r in tqdm(r_values):
    prob = simulate probability(r)
    probabilities.append(prob)
# Plot results
plt.figure(figsize=(10, 6))
plt.plot(r values, probabilities, 'b-', label='Simulated')
plt.grid(True)
plt.xlabel('r')
plt.ylabel('Probability')
plt.title('Chord Intersection Probability vs r')
plt.legend()
plt.show()
```

2 Problem B4

Let n be a positive integer. Set $a_{n,0} = 1$. For $k \ge 0$, choose an integer $m_{n,k}$ uniformly at random from the set $\{1, 2, ..., n\}$, and let

$$a_{n,k+1} = \begin{cases} a_{n,k} + 1, & \text{if } m_{n,k} > a_{n,k}; \\ a_{n,k}, & \text{if } m_{n,k} = a_{n,k}; \\ a_{n,k} - 1, & \text{if } m_{n,k} < a_{n,k}. \end{cases}$$
(2.14)

Let E(n) be the expected value of $a_{n,n}$. Determine $\lim_{n\to\infty} \frac{E(n)}{n}$.

2.1 Solution

Firstly, we notice that $1 \le a_{n,n} \le n$. Dropping the subscript n we can write the equation Equation (2.14) as

$$a_{k+1} = a_k + X (2.15)$$

where X is a random variable that takes the values 1, 0 and -1 when $m_k > a_k$, $m_k = a_k$ and $m_k < a_k$ respectively. Taking expectation on both sides of Equation (2.15) we get

$$\mathbb{E}[a_{k+1}] = \mathbb{E}[a_k] + \mathbb{E}[X]. \tag{2.16}$$

To calculate $\mathbb{E}[X]$, we make use of the **Law of Iterated Expectations**,

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|a_k]] = \mathbb{E}\left[1 \cdot \frac{n - a_k}{n} + (-1) \cdot \frac{a_k - 1}{n}\right] = \left(-\frac{2}{n}\right) \mathbb{E}[a_k] + \frac{n + 1}{n}.$$
 (2.17)

Substituting the value of $\mathbb{E}[X]$ from Equation (2.17) in Equation (2.16), we get

$$\mathbb{E}[a_{k+1}] = \frac{n-2}{n} \mathbb{E}[a_k] + \frac{n+1}{n}.$$
 (2.18)

Setting $b(k) = \mathbb{E}[a_k]$ in Equation (2.18), we get the following recurrence relation

$$b(k+1) = \frac{n-2}{n}b(k) + \frac{n+1}{n}$$
 (2.19)

with b(0) = 1. We use generating functions to solve the above linear recurrence relation. Let

$$G(z) = \sum_{k=0}^{\infty} b(k)z^k$$
(2.20)

Multiplying both sides of the recurrence relation by z^k and summing up both sides of the equation term by term over the nonnegative integers, we get

$$\sum_{k=0}^{\infty} b(k+1)z^k + \frac{2-n}{n} \sum_{k=0}^{\infty} b(k)z^k = \frac{n+1}{n} \sum_{k=0}^{\infty} z^k$$

$$\Rightarrow \sum_{k=0}^{\infty} b(k+1)z^{k+1}z^{-1} + \frac{2-n}{n}G(z) = \frac{n+1}{n(1-z)}$$

$$\Rightarrow (G(z) - b(0))z^{-1} + \frac{2-n}{n}G(z) = \frac{n+1}{n(1-z)}$$

$$\Rightarrow G(z) = \frac{n+z}{(n-(n-2)z)(1-z)}$$

$$\Rightarrow G(z) = \frac{1}{2} \sum_{k=0}^{\infty} \left(n+1-(n-1)\left(\frac{n-2}{n}\right)^k\right) z^k.$$
(2.21)

Therefore,

$$\lim_{n \to \infty} \frac{E(n)}{n} = \lim_{n \to \infty} \frac{b(n)}{n} = \lim_{n \to \infty} \frac{1}{2} \frac{n+1-(n-1)\left(\frac{n-2}{n}\right)^n}{n} = \frac{1}{2} (1-e^{-2}). \tag{2.22}$$

2.2 Computational verification

From the code below we get the following plot for the simulated value of $\frac{E(n)}{n}$ against $\frac{b(n)}{n}$ calculated analytically:

2.2.1 Python Code

```
import numpy as np
import matplotlib.pyplot as plt
def simulate_process(n, num_trials=1000):
    final_values = []
    for _ in range(num_trials):
        a = 1
        for _ in range(n):
            m = np.random.randint(1, n+1)
            if m > a:
                a += 1
            elif m < a:</pre>
                a -= 1
        final_values.append(a)
    return np.mean(final values)
def analytical_function(n):
    return 0.5 * ((n+1 - (n-1)*((n-2)/n)**n)/n)
# Generate data points
n_values = np.arange(2, 101) # n from 1 to 100
simulated_values = []
analytical_values = []
# Calculate both simulated and analytical values
print("Running simulation...")
for n in n_values:
    if n == 1: # Special case for n=1
        simulated_values.append(1)
    else:
        en = simulate_process(n)
        simulated_values.append(en/n)
    analytical values.append(analytical function(n))
# Create the plot
plt.figure(figsize=(12, 8))
plt.plot(n_values, simulated_values, 'b-', label='Simulated E(n)/n', alpha=0.7)
plt.plot(n_values, analytical_values, 'r--', label='1/2(n+1 - (n-1)(1-2/n)^n)',
alpha=0.7)
plt.xlabel('n')
plt.ylabel('Value')
plt.title('Comparison of Simulated E(n)/n vs Analytical Function')
plt.grid(True)
plt.legend()
plt.show()
```